

Les conférences du Jardin des Sciences

PLAN

- La radioactivité en question
- Sources de rayonnements ionisants
 - Exposition naturelle
 - Exposition cosmique
 - Exposition artificielle
- Radon
 - Risque sanitaire
 - Aspect réglementaire
 - métrologie

Introduction

France: 58 réacteurs \Rightarrow 63 GWe/an, 75 % des besoins en électricité

Activités minières, centres de production, usines de retraitement, gestion des déchets \Rightarrow surtout après l'accident de Tchernobyl, a une prise de conscience de l'impact sur l'environnement.

Radioactivité naturelle et artificielle dans l'environnement, est devenue une préoccupation sociétale.

Décret n° 2002-460 du 4 avril

Protection générale des personnes contre les dangers des RI

IRSN

Gestion du réseau national de mesures de la radioactivité de l'environnement

contexte

Recherches -

Physico-chimie des radionucléides dans le secteur de l'énergie nucléaire présent et futur (amont et aval du cycle des combustibles), ainsi que l'environnement et la médecine

Missions

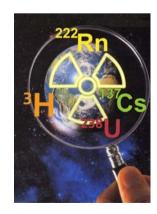
Recherche fondamentale dans tous les domaines de la physico-chimie des actinides et produits de fission (solide, en solution et aux interfaces), et sur les effets des rayonnements ionisants sur la physico-chimie des RN

Projets à développer :

- Physico-chimie des radionucléides
- Physico-chimie sous irradiation
 Métrologie des RI

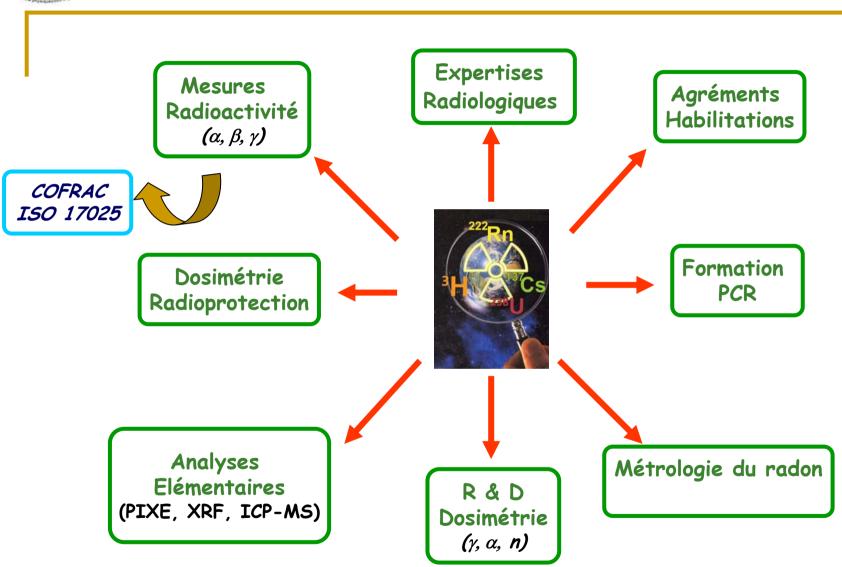
Bonne connaissance de la métrologie des radionucléides et des RI

Institut de Recherches Subatomiques


UMR 7500 CNRS/IN2P3-ULP

Activités de recherches :

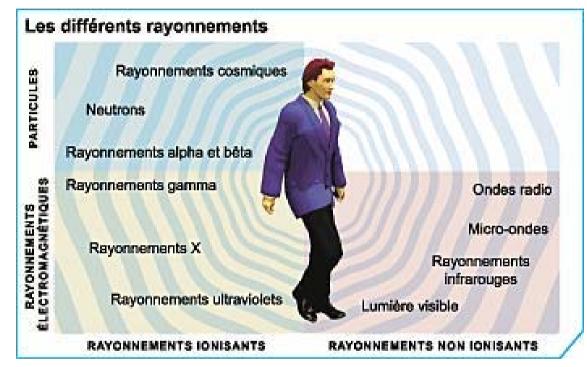
- ♦ Physique des Particules et des Astro-particules
- ♦ Physique Nucléaire et Chimie Nucléaire
- Pluridisciplinaires :
 - * Aval du cycle électronucléaire
 - * Applications Bio-médicales
 - * Radioprotection et Mesures Environnementales (RaMsEs)


- Radioprotection & dosimétrie
- Analyses & expertises
- R & D : Métrologie Rayonnements Ionisants

Activités RaMsEs

Classification des Rayonnements

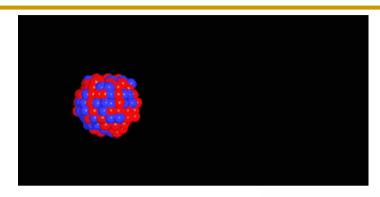
Selon leurs effets sur la matière

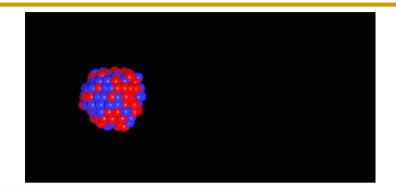

Rayonnement ionisant:

susceptible d'arracher des électrons à la matière.

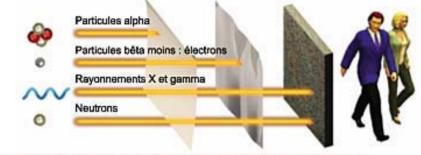
$$E_{RT} > B_e$$

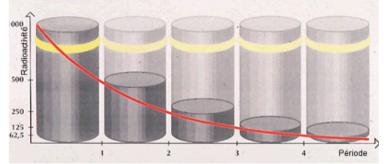
matière vivante (C, H, O, N)




	Spectres de raies	Spectres continus
R.D.I	α, Electrons Auger	β-,β+
R.I.I	γ, X de fluorescence	X de freinage, Neutrons

Qu'est ce la radioactivité?





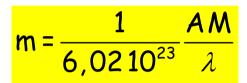
Loi de décroissance :

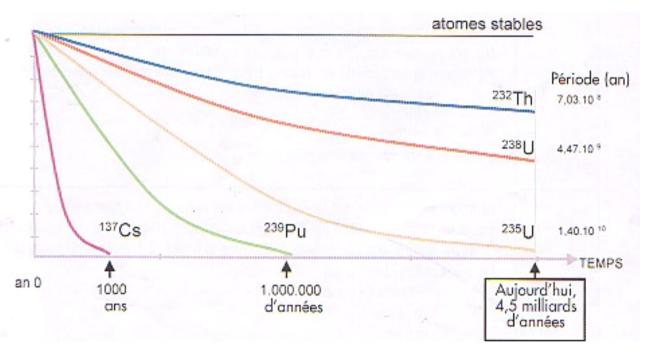
$$A(t) = A_0 e^{-\lambda t}$$

• Période : $T = \frac{0.693}{\lambda}$

$$A(nT) = \frac{A_0}{2^n}$$

Unité : Bq


1 Ci = 37 GBq 1 Bq = 27 pCi



Périodes radioactives

Décroissance de la radioactivité naturelle créée lors de la formation de la Terre

Radioélément	Période	Activité massique(Bq/g)		
131 I	8 jours	4,6 10 ¹⁵		
¹³⁷ Cs	30 ans	3,2 10 ¹²		
²³⁹ Pu	24 000 ans	23 10 ⁹		
238U	4,5 10 ⁹ ans	12,3 10 ³		

Origine de la radioactivité

Le Becquerel est une très petite unité

✓ Eau minérale : 2 à 4 Bg/L ⁴⁰K

0,02 à 1,8 Bq/L ²²⁶Ra 0,01 à 0,9 Bq/L ²³⁸U

✓ Eau de pluie : 0,5 Bq/L

✓ Eau de mer : 13 Bq/L ⁴⁰K + traces U, ³H, ⁸⁷Rb

✓ Poisson: 100 Bq/kg ⁴⁰K

✓ Lait: 80 Bq/kg dont 62 % ⁴⁰K

✓ Pomme de terre : 150 Bq/kg ⁴⁰K

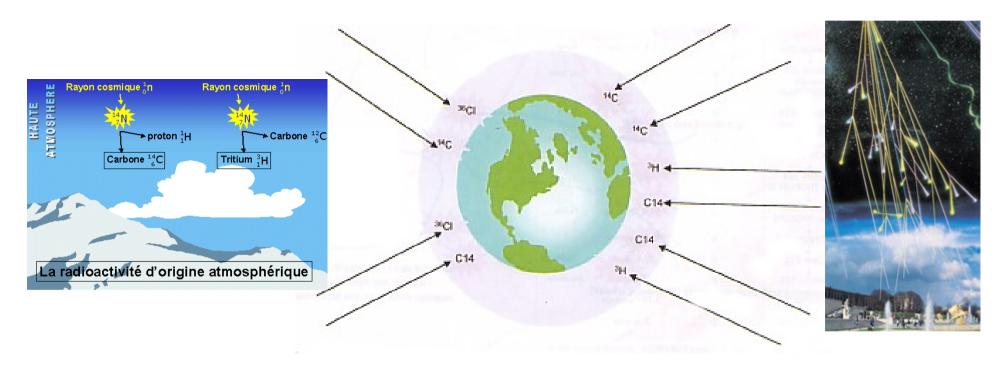
✓ Engrais phosphatés: 5 000 Bq/kg U, Th, ⁴⁰K

√ Sédiments: 400 Bq/kg ⁴⁰K + 12 % U-Th

✓ Granite: 8 000 Bq/kg 600 à 2000 ²³⁸U; 600 ²²⁶Ra

✓ Matériaux de construction :

Béton: 200 à 1 000 Bq/kg ⁴⁰K
 Briques: 600 à 1 000 Bq/kg ⁴⁰K


> Plâtre: 50 à 1 000 Bq/kg 226Ra dominant du au phosphogypse

Origine de la radioactivité

La radioactivité naturelle créée au jour le jour par les rayonnements cosmiques

L'activation des noyaux stables (N, Ar, ...) de l'atmosphère terrestre créé en permanence des noyaux radioactifs

Origine de la radioactivité

✓ Corps humain adulte : 4 500 Bq ⁴⁰K

3 700 Bq 14C

Nous sommes des sources radioactives

✓ Essais atmosphériques : 1945 à 1981

423 essais = 143 USA + 142 URSS + 45 FR + 21 GB + 22 Chine

✓ Accidents des installations nucléaires :

❖ 1957 : Windscale (GB)

◆ 1986 : Techernobyl (URSS)

131 I, 134-137 Cs, 106 Ru

✓ Industries nucléaires :

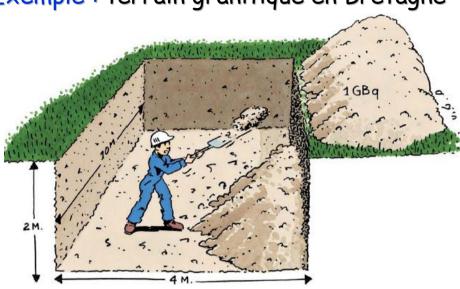
	Rejets liquides	Rejets gazeux		
Réacteur nucléaire	³ H, ⁶⁰ Co, ⁵⁴ Mn, ¹¹⁰ Ag, ¹³¹ I, ¹³⁷ Cs	³ H, ¹⁴ C, ⁸⁵ Kr, ¹³¹ I		
Usine de retraitement	³ H, ¹⁴ C,, ⁹⁰ Sr, ¹²⁹ I, ¹³⁷ Cs	³ H, ¹⁴ C, ⁸⁵ Kr, ¹²⁹ I		

Radiotoxicité

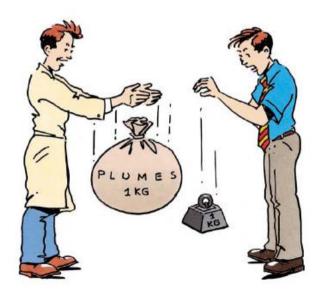
Les radioéléments sont ± nocifs

Énergie

Fixation sur les organes

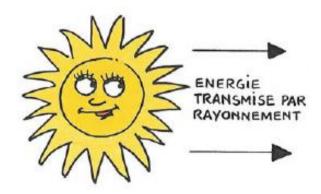

GROUPE 1 = Très forte radiotoxicité (Ancien groupe I)	²²⁷ Ac, ²⁴¹ Am, ²⁵² Cf, ²⁴² Cm, ²⁴⁴ Cm, ²³⁷ Np, ²³¹ Pa, ²¹⁰ Pb, ²¹⁰ Po, ²³⁶ Pu, ²³⁹ Pu, ²²⁶ Ra, ²²⁶ Th, ²³⁰ Th, ²³³ U
GROUPE 2 = Forte radiotoxicité (ancien groupe II A)	¹¹⁰ Ag ^m , ¹⁰⁹ Cd, ¹⁴⁴ Ce, ⁶⁰ Co, ¹³⁴ Cs, ¹⁵² Eu, ¹²⁵ I, ¹³¹ I, ¹⁰⁶ Ru, ¹⁵¹ Sm ⁹⁰ Sr, ^{14t} Th, ²³² Th
GROUPE 3 = Radiotoxicité modérée (ancien groupe II B)	 141Ce, 143Ce, 36Cl, 57Co, 58Co, 137Cs, 169Er, 152mEu, 55Fe, 59Fe, 203Hg, 192Ir, 42K, 140La, 54Mn, 99Mo, 22Na, 24Na, 63Ni, 32P, 147Pm, 149Pm, 191Pt, 222Ra, 86Rb, 103Ru, 124Sb, 48Sc, 75Se, 113Sn, 180Tb, 234Th, 204Tl, 170Tm, 48V, 169Yb, 65Zn
GROUPE 4 = Faible radiotoxicité (ancien groupe III)	⁷ Be, ⁵¹ Cr, ⁶⁴ Cu, ³ H, ¹²⁹ I, ^{113m} In, ⁸⁵ Kr, ²²⁰ Rn, ³⁵ S, ³¹ Si, ^{99m} Tc, ^{nat.} U, ²³⁵ U, ¹³³ Xe

Comment représenter la radioactivité?


Exemple: terrain granitique en Bretagne

 $80 \text{ m}^3 \Rightarrow 1 \text{ GBq}$ U, Th, Ra et K

Les Becquerels ne sont pas tous les mêmes


Émission et réception

Becquerel, Gray et Sievert

3 unités pour mesurer :

- la radioactivité,
- * son énergie,
- * ses effets

Activité de la source en **Becquerel** (α, β, γ...)

Dose Gray (ce que mesure un dosimètre)

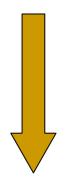
Effets biologiques
en Sievert
produits par l'énergie reçue
et pondérée par le type
de rayonnement, la durée
de l'exposition et la sensibilité
de l'organisme ou organe atteint.

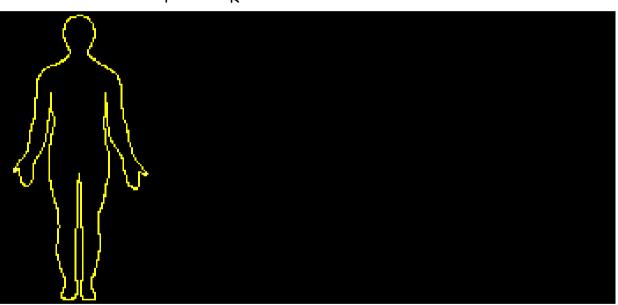
Anciennes unités :

 $4 \cdot 1 \cdot Ci = 3.7 \cdot 10^{10} \text{ Bg}$

❖ 1 rad = 0,01 Gy

❖ 1 rem = 0,01 Sv

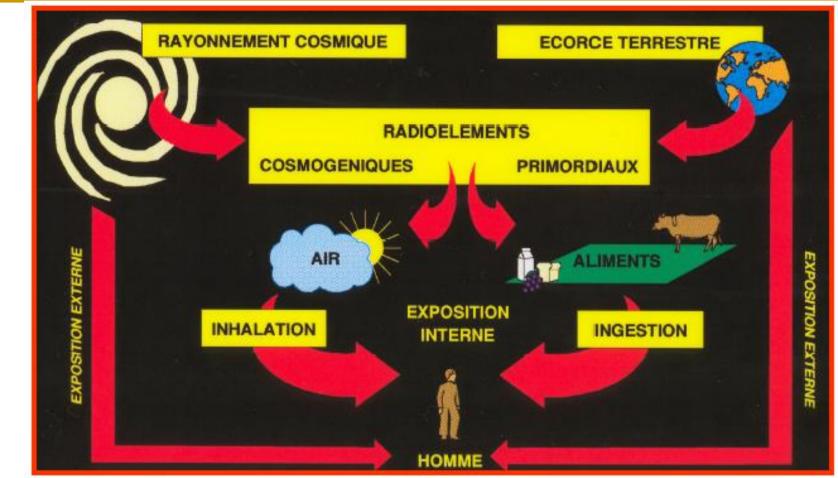



Effets biologiques

- * Tissu ou organe : Équivalent de dose $H_T = \sum_R W_R D_{T,R}$
- \diamond Corps entier: Dose efficace $E = \sum_{T} W_{T} \sum_{R} W_{R} D_{T,R}$

G. Charpak et R. Garwin (Acad. Nat. Med. 2001)

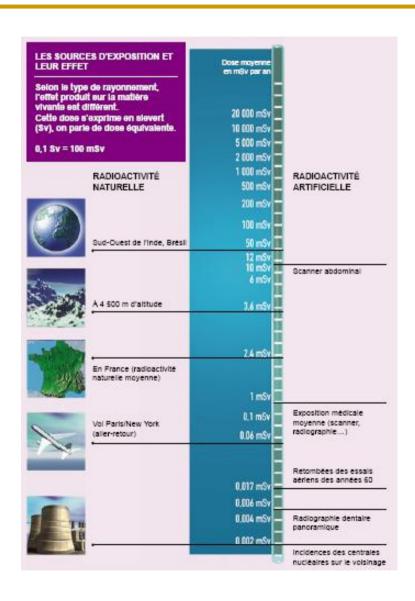
DARI : unité de Dose Efficace pour évaluer l'effet des faibles doses

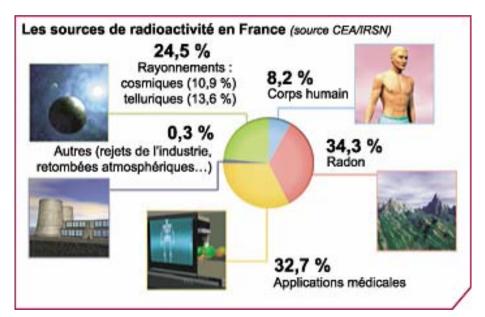

1 DARI \cong E_{ingestion}(6 kBq ⁴⁰K) + E_{cosmique}(4 KBq ¹⁴C) pour un Homme de 70 kg

 $\dot{E} = 0.17 \text{ mSv/an}$

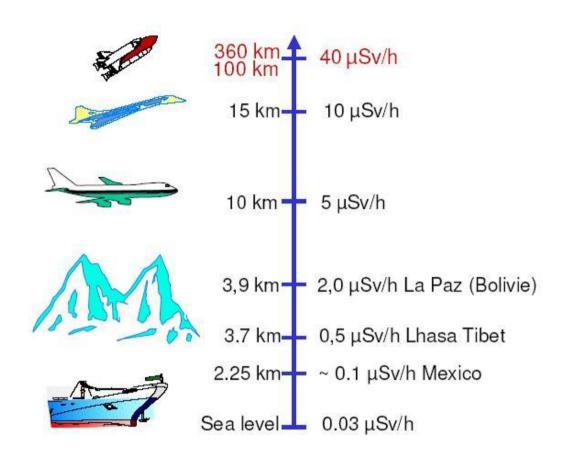
Exposition externe et contamination

$$A(t) = A_0 e^{-\lambda_e t}$$


$$T_e = \frac{T_b T_p}{T_b + T_p}$$


Sources d'exposition

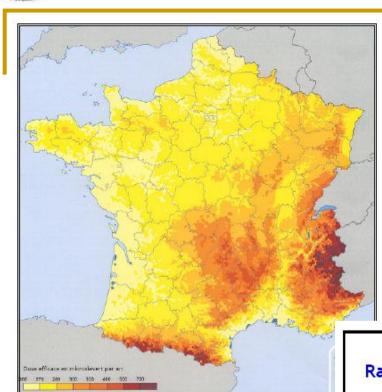
Exposition moyenne en France :


2,9 à 3,5 mSV/an/habitant

Exposition aux rayons cosmiques

http://www.sievert-system.org

http://www.sievert-system.org

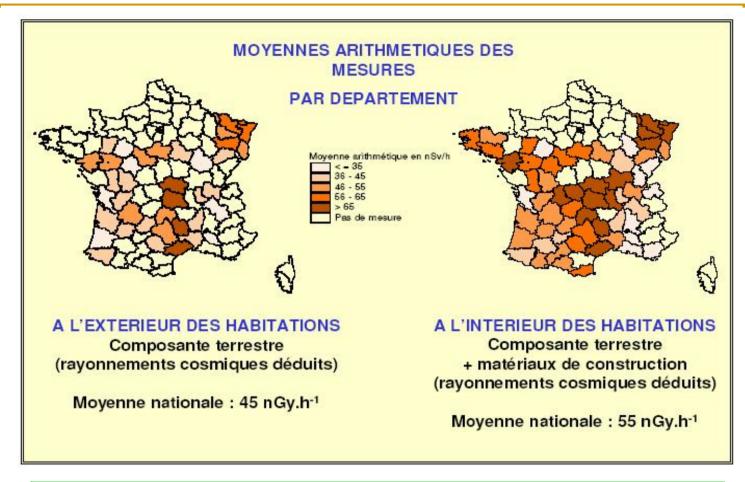




Exposition aux rayons cosmiques

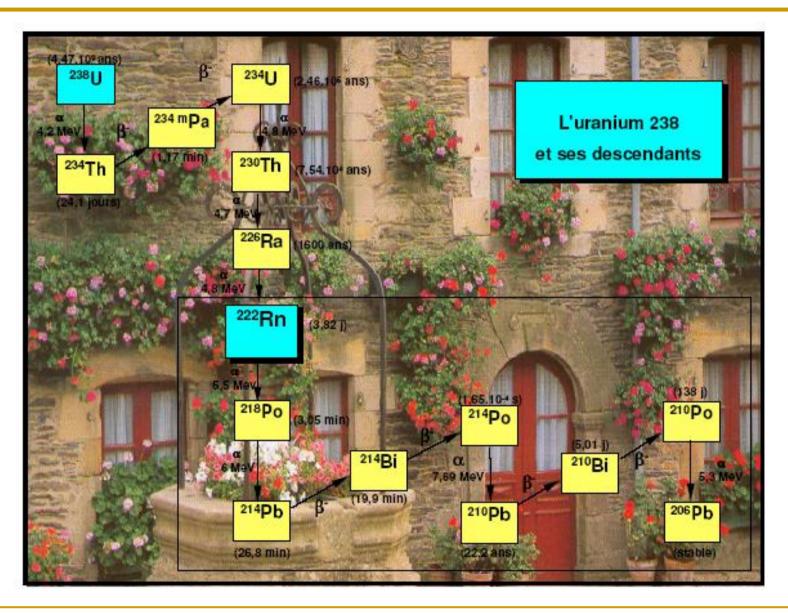
Radionucléides cosmogéniques

Radionucléide	Période	Incorporation annuelle (Bq/an)	Dose efficace annuelle (µSv/an)
³H	12,3 a	500	0,01
⁷ Be	53,6 j	1000	0,03
²² Na	2,62 a	50	0,15
¹⁴ C	5 730 a	20000	12



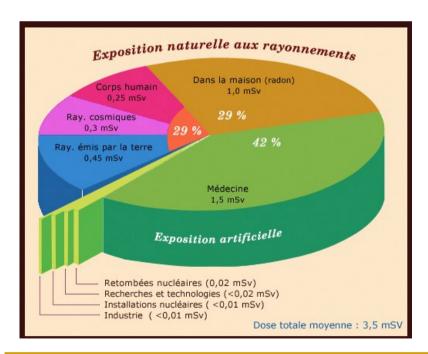
 $\langle E \rangle = 0.28 \text{ mSv/an}$

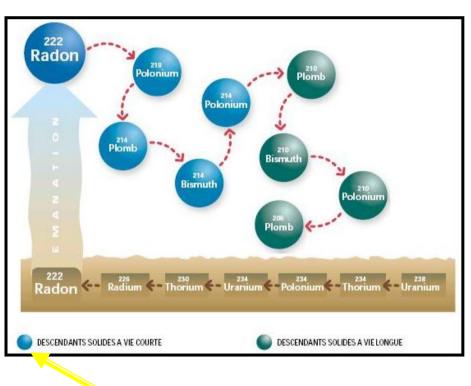
Exposition naturelle tellurique en France



	⁴⁰ K	²³² Th	238 U
Air libre	15 nGy/h	26 nGy/h	16 nGy/h

Le radon





Radon: gaz radioactif d'origine naturelle

- Désintégration : U et Ra présents dans la croûte terrestre.
- ❖ Présent à la surface de la planète, provient surtout des soussols granitiques et volcaniques ainsi que de certains matériaux de construction.

se fixent sur les aérosols et peuvent être inhalés

Carte d'activité volumique du Radon

Moyennes arithmétiques départementales en Bq.m³

0 à 50

de 51 à 100

de 101 à 150

> 150

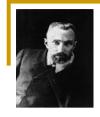
* France: IRSN (1982 à 2000)

 \checkmark National : $\langle A \rangle = 90 \text{ Bg/m}^3$

✓ Département : <A> = 68 Bq/m³

♦ G.B : 20 Bq/m3

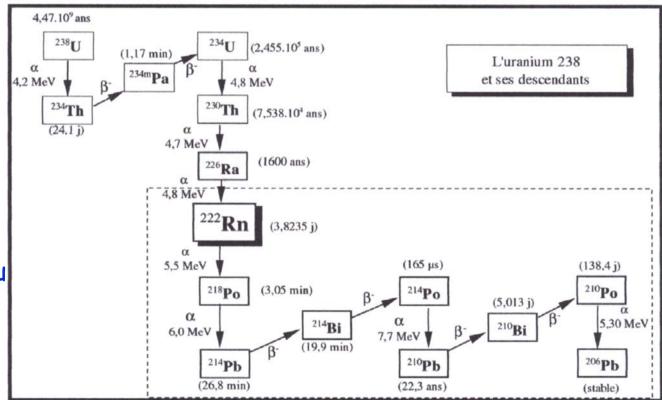
❖ Suède : 108 Bq/m3


	SEINE-SACENS 102 SEINE-SACENS 104 SEINE VIA-DE- MARNE ILE DE FRANCE PETITE COURONNE	SO TO THE TOTAL	
n ³	% > 1 000 Bq/m ³	HERALT RHONE VAR NUCLEAR AND	
	1.2%	ORENIUS 1	
	2.5%	CORE	
	0.9%	Control Control	
	1.5%	CORSE	
	1.0%		
	0.5%		

	Nombre de mesures réalisées	Moyenne arithm. (en Bq/m³)	% > 200 Bq/m³	% > 400 Bq/m³	% > 1 000 Bq/m ³
Allier	169	145	20.7%	4.1%	1.2%
Cantal	121	161	19 %	4.1%	2.5%
Haute-Loire	113	157	23.9 %	3.5%	0.9%
Puy-de-Dôme	199	146	18.1 %	6.5%	1.5%
AUVERGNE	602	154	19.8%	6.0%	1.0%
France entière	12 641	90	9.0%	2.3%	0.5%

Propriétés du radon

Famille Isotope Période

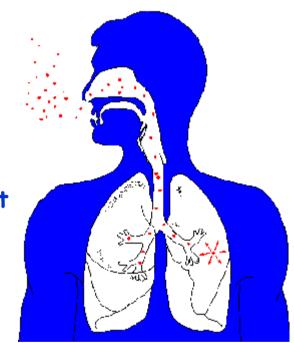

235U
219Rn Actinon
3,96 s
232Th
220Rn Thoron
55,6 s
238U
222Rn Radon
3,82 j

- ✓ Découvert en 1899
- √ gaz rare,
- ✓ inodore,
- ✓ incolore,
- ✓ inerte,
- ✓ très volatile,
- √ soluble dans l'eau

Diffusion:

 $Air : 10^{-5} \text{ m}^2/\text{s}$

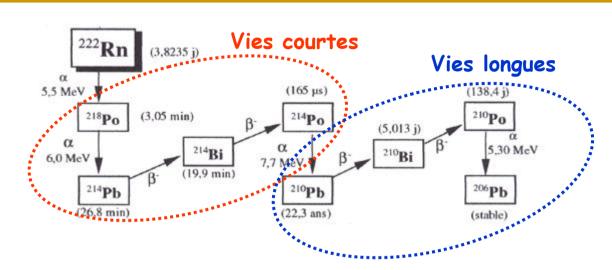
❖ Eau : 10⁻⁹ m²/s



Effets du radon sur la santé

OMS a reconnu en 1987 le radon comme cancérigène pulmonaire humain

- Nocivité: une fois inhalé, Rn continue sa décroissance à l'intérieur des poumons. Ses descendants solides irradient les cellules les plus sensibles des bronches.
- Études épidémiologiques : l'exposition au Rn accroît le risque de cancer du poumon chez les mineurs
- Prévention: ventilation des galeries des mines souterraines



- Comparaison avec le tabagisme :
 - √ Tabagisme ⇒ (19 000 hommes + 3 000 femmes)/an en France
 - ✓ Paquet/jour ⇒ augmentation du risque d'un facteur 10 à 20 @ 3000 Bq/m³

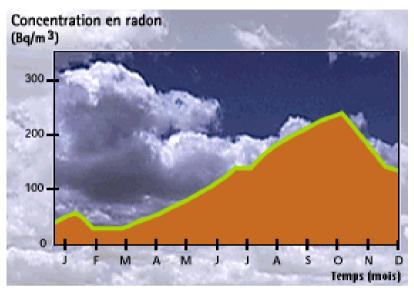
Évolution des descendants solides

$$EAP_{V}(MeV.m^{-3}) = 13,7N(^{218}Po) + 7,7[N(^{214}Pb) + N(^{218}Po)]$$

Facteur d'équilibre dans les habitations

$$CIPR \Rightarrow f = 0.4$$

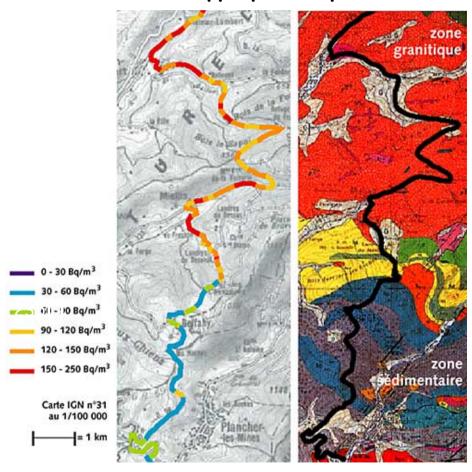
	EAP (MeV)	EAP(MeV/Bq)	
²¹⁸ Po	13,7	3 620	
²¹⁴ Pb	7,7	17 800	
²¹⁴ Bi	7,7	13 100	
²¹⁴ Po 7,7		2 10-3	
Total à l'équilibre/Bq de Rn		34 520	



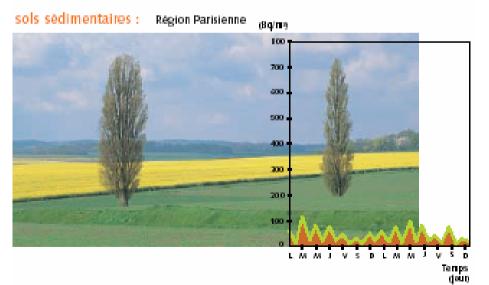
Radon dans l'environnement

Concentration varie d'un lieu à l'autre dans une région :

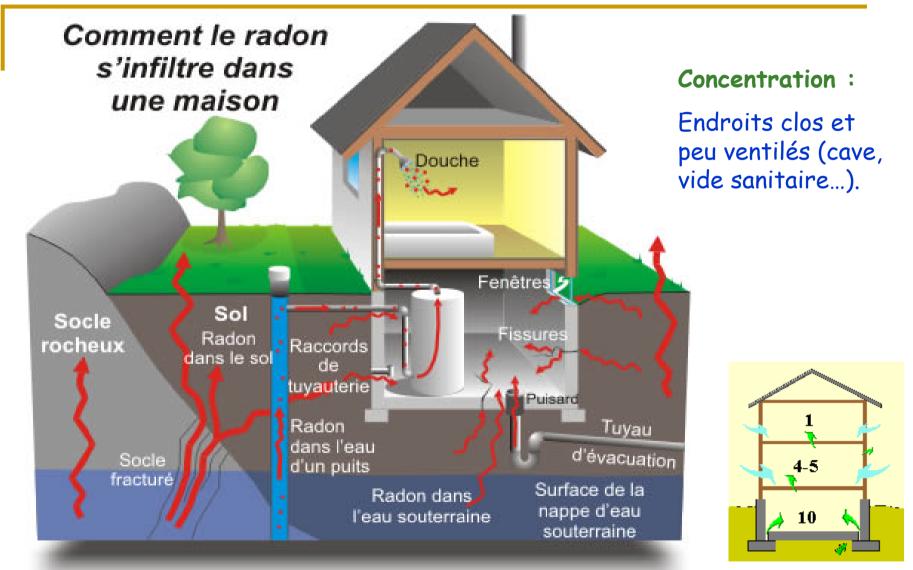
- * Nature des sols
- * Conditions métrologiques :
 - ✓ pression atmosphérique,
 - √ température,
 - √ humidité,
 - ✓ précipitations,
 - ✓ vitesse du vent


Concentration du Rn augmente significativement après un orage

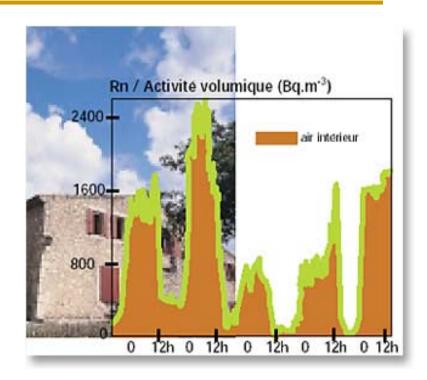
Radon dans l'environnement



- caractéristiques géologiques du sous-sol,
- contraintes tectoniques,
- niveau de la nappe phréatique

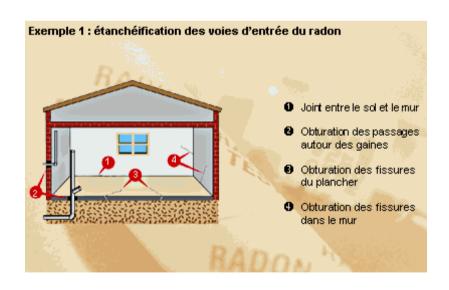

sols sédimentaires : Région Parisienne

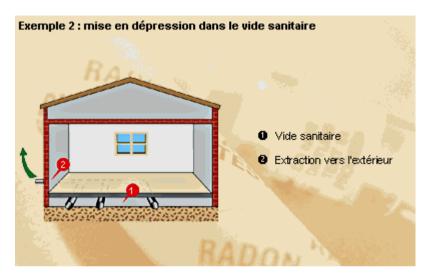
Le Radon dans les habitations

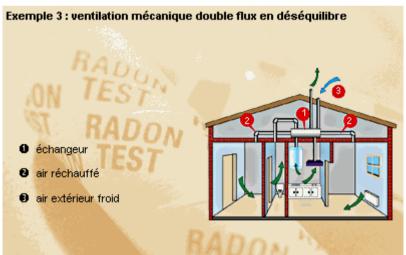


Le Radon dans les habitations

La concentration varie selon l'occupation et les modes de vie des habitants.






Techniques de réduction du radon

Ventiler les pièces habitées, en ouvrant simplement les fenêtres ou si nécessaire en installant une ventilation mécanique

http://auvergne.sante.gouv.fr/environnement/qualite_habitat/techniques_reductions.htm

Réglementation en vigueur



Conseil Supérieur d'Hygiène Publique

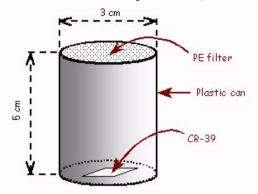
Circulaire DGS/DGUHC 99-46 du 27 janvier 1999 (Préfets, DRASS, DRE)

Organisation du risque de la gestion du risque lié au radon

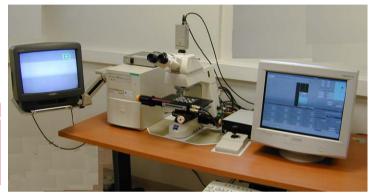
Métrologie du radon

- Piégeage du radon sur charbon actif puis mesure par SL ou spectrométrie gamma
- F Emanométrie
- Détecteur semi conducteur en regard d'un volume d'air connu
- Détecteurs Solides de Traces Nucléaires
- Détermination de l'énergie alpha potentielle volumique
- Chambre d'ionisation

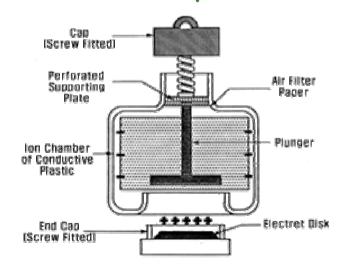
Normes AFNOR


- * M60-764 : mesure intégrée de l'EAP des descendants du radon
- * M60-765 : mesure instantanée de l'EAP des descendants du radon
- * M60 -766 : mesure intégrée de l'activité volumique du radon gaz
- * M60-767: mesure en continu de l'activité volumique du radon gaz

Dosimétrie passive

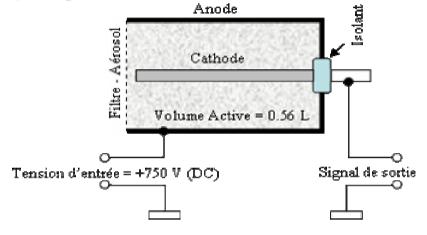


❖ DSTN : LR115, CR39

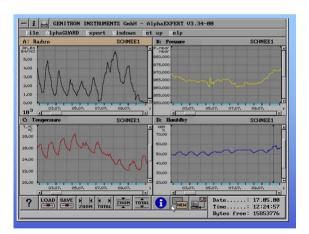


* Chambre d'ionisation Electret : Disque en Téflon chargé positivement

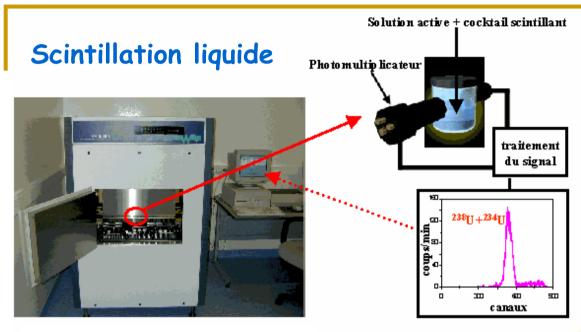
$$A_{Rn} = \frac{(V_{I} - V_{F})}{CF \times t} - B_{\gamma}$$

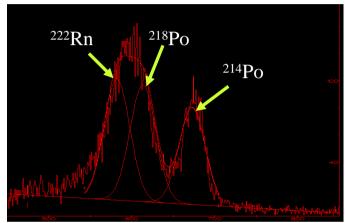


Mesure continue

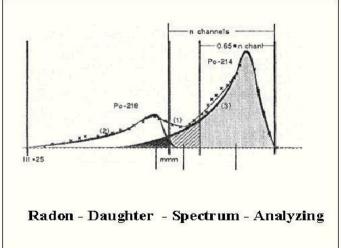


* Chambre d'ionisation : ALPHAGARD





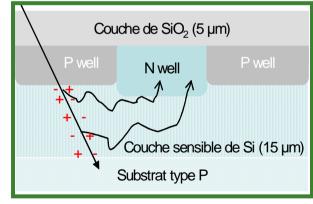
Scintillation

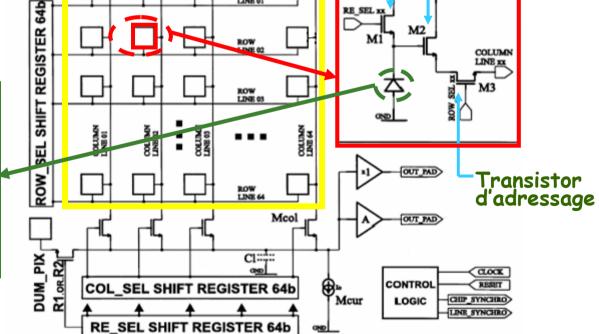


Emanométrie

MIMOSA (Minimun Ionizing MOS Active pixel)

√ 4 plages : 64 x 64 pixels

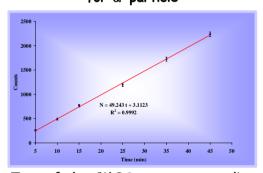

✓ Surface du pixel : $20 \times 20 \mu m^2$


✓ Alimentation : 5 V

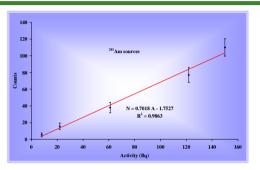
Transistor

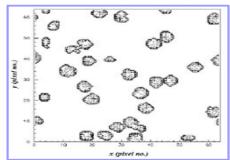
Principe de détection:

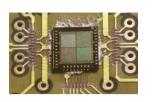


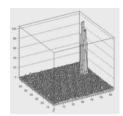


Dosimétrie active par CMOS

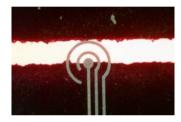


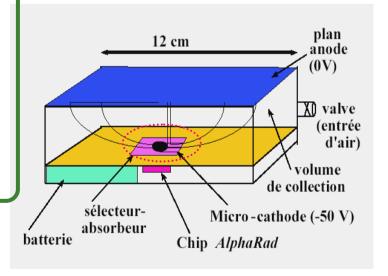

Simulation of detection efficiency for α -particle


Test of the CMOS reponse according to the exposition time for an $^{\rm 241}{\rm Am}$ source



Test of CMOS response depending on the ²⁴¹Am source activity




Display of cumulated sampling of α-particle events registered by the CMOS over 75 h

MIMOSA

Radioactivité des sources minérales

Radionucléide (mBq/l)	Evian Cachat	Volvic	Contrex éville	Vittel	Perrier Vergèze	St Yorre Royale	Badoit St Galmier	St Alban
²²⁶ Ra	40	40	27	29	26	250	240	1800
²²⁸ Ra	4	42,7	2,9	2,6	500	170		
234[15	12	19	15	40	130	2500	
235[]							44	
²³⁸ U	15	12		15	40	26	900	305
²¹⁰ Pb	28	28	19	20	18	175	168	1260
²¹⁰ Po	16	16	10	11	10	100	96	720
		Dose et	fficace enga	gée annu	elle (mSv)			
Adulte	0,03	0,03	0,02	0,02	0,02	0,35	0,32	1,24
Nourrisson	0,35	0,35	0,24	0,26				22

Les sources de rayonnements ionisants sont considérées comme naturelles dans la mesure où l'exposition qui en résulte n'est pas augmentée de manière significative par l'Homme. **UNSCEAR** Scientific Committee on the Effects of Atomic Radiation